organic compounds Acta Crystallographica Section E
Experimental
Structure Reports Online
Crystal data
ISSN 1600-5368
2-(4-Chlorophenyl)-2,3-dihydroquinolin4(1H)-one Meryem Chelghoum,a Abdelmalek Bouraiou,a Sofiane Bouacida,b,c* Mebarek Bahnousa and Ali Belfaitaha a
Laboratoire des Produits Naturels d’Origine Ve´ge´tale et de Synthe`se Organique, PHYSYNOR Universite´ Constantine 1, 25000 Constantine, Algeria, bUnite´ de Recherche de Chemie de l’Environnement et Mole´culaire Structurale, CHEMS, Universite´ Constantine 1, 25000 , Algeria, and cDe´partement Sciences de la Matie`re, Faculte´ des Sciences Exactes et Sciences de la Nature et de la Vie, Universite´ Oum El Bouaghi, 04000 Oum El Bouaghi, Algeria Correspondence e-mail: [emailprotected] Received 17 January 2014; accepted 22 January 2014
˚; Key indicators: single-crystal X-ray study; T = 150 K; mean (C–C) = 0.003 A R factor = 0.045; wR factor = 0.107; data-to-parameter ratio = 17.2.
The title molecule, C15H12ClNO, features a dihydroquinolin4(1H)-one moiety attached to a chlorobenzene ring. The heterocyclic ring has a half-chair conformation with the ˚ above the plane of the five methine C atom lying 0.574 (3) A ˚ ). The dihedral remaining atoms (r.m.s. deviation = 0.0240 A angles between the terminal benzene rings is 77.53 (9) , indicating a significant twist in the molecule. In the crystal, supramolecular zigzag chains along the c-axis direction are sustained by N—H O hydrogen bonds. These are connected into double chains by C—H interactions.
Related literature For background to and chemical reactivity of quinolone heterocycles, see: Diesbach & Kramer (1945); Prakash et al. (1994); Singh & Kapil (1993); Kalinin et al. (1992); Chauvin & Olivier (1996). For related structures, see: Bouraiou et al. (2008, 2011); Benzerka et al. (2011); Chelghoum et al. (2012).
˚3 V = 2505.8 (6) A Z=8 Mo K radiation = 0.29 mm1 T = 150 K 0.17 0.12 0.06 mm
C15H12ClNO Mr = 257.71 Monoclinic, C2=c ˚ a = 17.703 (2) A ˚ b = 10.7537 (17) A ˚ c = 13.658 (2) A = 105.486 (6)
Data collection Bruker APEXII diffractometer Absorption correction: multi-scan (SADABS; Sheldrick, 2002) Tmin = 0.932, Tmax = 0.983
15688 measured reflections 2852 independent reflections 2314 reflections with I > 2(I) Rint = 0.037
Refinement R[F 2 > 2(F 2)] = 0.045 wR(F 2) = 0.107 S = 1.08 2852 reflections 166 parameters
H atoms treated by a mixture of independent and constrained refinement ˚ 3 max = 0.53 e A ˚ 3 min = 0.39 e A
Table 1 ˚ , ). Hydrogen-bond geometry (A Cg2 and Cg3 are the centroids of the C1–C6 and C10–C15 benzene rings, respectively. D—H A i
N1—H1N O1 C5—H5 Cg3ii C11—H11 Cg2iii
D—H
H A
D A
D—H A
0.84 (2) 0.93 0.93
2.15 (2) 2.83 2.63
2.957 (2) 3.641 (2) 3.465 (2)
162 (2) 146 149
Symmetry codes: (i) x; y þ 2; z 12; (ii) x þ 12; y þ 52; z þ 12; (iii) x þ 12; y þ 52; z þ 1.
Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SIR2002 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg & Berndt, 2001); software used to prepare material for publication: WinGX (Farrugia, 2012).
Thanks are due to MESRS (Ministe´re de l’Enseignement Supe´rieur et de la Recherche Scientifique - Algeria) for financial support. We are grateful to Dr Roisnel Thierry from the Centre de difractome´trie de Rennes, Universite´ de Rennes 1, France, for his technical assistance with the data collection. Supporting information for this paper is available from the IUCr electronic archives (Reference: TK5289).
References Benzerka, S., Bouraiou, A., Bouacida, S., Roisnel, T. & Belfaitah, A. (2011). Acta Cryst. E67, o2084–o2085. Bouraiou, A., Berre´e, F., Bouacida, S., Carboni, C., Debache, A., Roisnel, T. & Belfaitah, A. (2011). Lett. Org. Chem. 8, 474–477. Bouraiou, A., Debbache, A., Rhouati, S., Carboni, B. & Belfaitah, A. (2008). J. Heterocycl. Chem. 45, 329–333. Brandenburg, K. & Berndt, M. (2001). DIAMOND. Crystal Impact, Bonn, Germany. Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
o202
Chelghoum et al.
doi:10.1107/S1600536814001548
Acta Cryst. (2014). E70, o202–o203
organic compounds Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388. Chauvin, Y. & Olivier, H. (1996). In Applied Homogeneous Catalysis with Organometallic Compounds, edited by B. Cornils & W. A. Herrmann, Vol. 1, p. 245. New York: Wiley-VCH. Chelghoum, M., Bahnous, M., Bouraiou, A., Bouacida, S. & Belfaitah, A. (2012). Tetrahedron Lett. 53, 4059–4061. Diesbach, H. & Kramer, H. (1945). Helv. Chim. Acta, 28, 1399–1405.
Acta Cryst. (2014). E70, o202–o203
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Kalinin, V. N., Shostakovsky, M. V. & Ponomaryov, A. B. (1992). Tetrahedron Lett. 33, 373–376. Prakash, O., Kumar, D., Saini, R. K. & Singh, S. P. (1994). Synth. Commun. 24, 2167–2172. Sheldrick, G. M. (2002). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Singh, O. V. & Kapil, R. S. (1993). Synth. Commun. 23, 277–283.
Chelghoum et al.
C15H12ClNO
o203
supplementary materials
supplementary materials Acta Cryst. (2014). E70, o202–o203
[doi:10.1107/S1600536814001548]
2-(4-Chlorophenyl)-2,3-dihydroquinolin-4(1H)-one Meryem Chelghoum, Abdelmalek Bouraiou, Sofiane Bouacida, Mebarek Bahnous and Ali Belfaitah 1. Introduction 2. Experimental 2.1. Synthesis and crystallization The corresponding 2′-aminochalcone (0.5 mmol) and [bmim]BF4 (1 g) were heating at 150 °C for 2.5 h; bmim is butylmethylimidazolium. The crude product was isolated by repeated extraction with diethyl ether (7×10 ml). Filtration of the residue through a silica plug gave the 2-(4-chlorophenyl)-2,3-dihydroquinolin-4(1H)-one (I). Single crystals suitable for the X-ray diffraction analysis were obtained by dissolving the pure compound in an Et2O/CHCl3 mixture and allowing the solution to slowly evaporate at room temperature. 2.2. Refinement The C-bound H atoms were geometrically placed (C—H = 0.93–0.98 Å) and refined as riding with Uiso(H) = 1.2Ueq(C). The H1N atom was refined with Uiso(H) = 1.2Ueq(N). Owing to poor agreement, the (1 1 0) reflection was omitted from the final cycles of refinement. 3. Results and discussion 2-Arylquinolo-4-ones are nitrogen-containing analogues flavanones and flavones, and are characterized by a benzo ring fused to six-membered nitrogen containing heterocyclic ring with an aryl substituent at position 2. The quinolone heterocyclic ring has many reactive sites for possible transformation and can also result in different degree of unsaturation (Diesbach & Kramer, 1945; Prakash et al., 1994; Singh & Kapil, 1993; Kalinin et al., 1992). To date, numerous accounts have been reported in the literature for the synthesis of quinolone, due to their frequent occurrence in biologically interesting molecules. RTILs have proven to be viable reaction media for numerous types of reaction, including, for example, Friedel–Crafts alkylations, Diels–Alder, Knoevenagel, 1,3-dipolar cycloadditions, and in three component coupling reactions (Chauvin & Olivier, 1996). As a part of our program directed toward the synthesis of new suitably functionalized heterocyclic compounds of potential biological activity (Bouraiou et al., 2008, 2011; Benzerka et al., 2011) and following our successes in the area of ionic liquid catalyzed 2-aminochalones isomerization into the corresponding 2-phenyl-2,3-dihydroquinolin-4(1H)-one (Chelghoum et al., 2012), we envisioned to get some information on the spatial arrangements of this type of compounds. We report herein the synthesis and single-crystal X-ray structure of 2-(4-chlorophenyl)-2,3-dihydroquinolin-4(1H)-one (I). The molecular geometry and the atom-numbering scheme of (I) are shown in Fig. 1 and features a dihydroquinolin-4(1H)-one moiety attached to a chlorobenzene group. The crystal packing can be described as alternating double layers parallel to the (100) along the a axis (Fig. 2). It is stabilized by N— H···O hydrogen bonding and C—H···π interactions (Fig. 3; Table 1).
Acta Cryst. (2014). E70, o202–o203
sup-1
supplementary materials
Figure 1 The molecular geometry of (I) with the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented as small spheres of arbitrary radius.
Figure 2 Alternating double layers parallel to (100) in (I), viewed down the c axis.
Acta Cryst. (2014). E70, o202–o203
sup-2
supplementary materials
Figure 3 A diagram of the layered crystal packing of (I), viewed down the b axis showing hydrogen bonds as dashed lines. 2-(4-Chlorophenyl)-2,3-dihydroquinolin-4(1H)-one Crystal data C15H12ClNO Mr = 257.71 Monoclinic, C2/c Hall symbol: -C 2yc a = 17.703 (2) Å b = 10.7537 (17) Å c = 13.658 (2) Å β = 105.486 (6)° V = 2505.8 (6) Å3 Z=8
F(000) = 1072 Dx = 1.366 Mg m−3 Mo Kα radiation, λ = 0.71073 Å Cell parameters from 5286 reflections θ = 2.4–27.2° µ = 0.29 mm−1 T = 150 K Prism, colourless 0.17 × 0.12 × 0.06 mm
Data collection Bruker APEXII diffractometer Graphite monochromator CCD rotation images, thin slices scans Absorption correction: multi-scan (SADABS; Sheldrick, 2002) Tmin = 0.932, Tmax = 0.983 15688 measured reflections
Acta Cryst. (2014). E70, o202–o203
2852 independent reflections 2314 reflections with I > 2σ(I) Rint = 0.037 θmax = 27.5°, θmin = 2.5° h = −22→21 k = −13→13 l = −16→17
sup-3
supplementary materials Refinement Refinement on F2 Least-squares matrix: full R[F2 > 2σ(F2)] = 0.045 wR(F2) = 0.107 S = 1.08 2852 reflections 166 parameters 0 restraints Primary atom site location: structure-invariant direct methods
Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H atoms treated by a mixture of independent and constrained refinement w = 1/[σ2(Fo2) + (0.0328P)2 + 4.0966P] where P = (Fo2 + 2Fc2)/3 (Δ/σ)max = 0.001 Δρmax = 0.53 e Å−3 Δρmin = −0.39 e Å−3
Special details Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)
C1 C2 H2 C3 H3 C4 H4 C5 H5 C6 C7 C8 H8A H8B C9 H9 C10 C11 H11 C12 H12 C13 C14 H14 C15
x
y
z
Uiso*/Ueq
0.14660 (10) 0.17699 (11) 0.1876 0.19115 (11) 0.2118 0.17487 (12) 0.1839 0.14538 (11) 0.1343 0.13150 (10) 0.10478 (11) 0.09756 (12) 0.0563 0.1462 0.07953 (11) 0.0258 0.08698 (11) 0.02108 (12) −0.0276 0.02618 (12) −0.0186 0.09869 (11) 0.16620 (11) 0.2148 0.15978 (11)
1.07351 (16) 1.17882 (17) 1.1752 1.28710 (18) 1.3555 1.29588 (18) 1.3697 1.19394 (18) 1.1994 1.08117 (16) 0.97037 (18) 0.85216 (18) 0.8016 0.806 0.87276 (17) 0.904 0.75256 (16) 0.69804 (18) 0.7351 0.58890 (19) 0.5527 0.53526 (16) 0.58739 (18) 0.5505 0.69599 (18)
0.61189 (13) 0.57430 (14) 0.5112 0.63005 (15) 0.6044 0.72502 (15) 0.7618 0.76280 (14) 0.8255 0.70848 (13) 0.75251 (13) 0.69154 (13) 0.7056 0.7138 0.57716 (13) 0.5523 0.52145 (13) 0.45834 (15) 0.4508 0.40597 (16) 0.364 0.41728 (14) 0.47938 (14) 0.4858 0.53192 (14)
0.0207 (4) 0.0245 (4) 0.029* 0.0281 (4) 0.034* 0.0307 (4) 0.037* 0.0283 (4) 0.034* 0.0225 (4) 0.0271 (4) 0.0282 (4) 0.034* 0.034* 0.0256 (4) 0.031* 0.0241 (4) 0.0315 (4) 0.038* 0.0329 (5) 0.04* 0.0264 (4) 0.0277 (4) 0.033* 0.0274 (4)
Acta Cryst. (2014). E70, o202–o203
sup-4
supplementary materials H15 N1 H1N O1 Cl1
0.2045 0.13339 (9) 0.1307 (12) 0.09352 (10) 0.10656 (4)
0.7314 0.96526 (14) 0.9735 (19) 0.96926 (14) 0.39956 (5)
0.5746 0.55585 (11) 0.4941 (16) 0.83773 (10) 0.35097 (4)
0.033* 0.0224 (3) 0.027* 0.0422 (4) 0.04532 (18)
Atomic displacement parameters (Å2)
C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 N1 O1 Cl1
U11
U22
U33
U12
U13
U23
0.0211 (8) 0.0264 (9) 0.0274 (10) 0.0348 (11) 0.0340 (11) 0.0258 (9) 0.0368 (11) 0.0415 (11) 0.0315 (10) 0.0345 (10) 0.0282 (10) 0.0286 (10) 0.0367 (10) 0.0260 (9) 0.0272 (10) 0.0332 (8) 0.0737 (11) 0.0608 (4)
0.0223 (9) 0.0259 (9) 0.0244 (9) 0.0257 (10) 0.0308 (10) 0.0243 (9) 0.0291 (10) 0.0256 (9) 0.0250 (9) 0.0206 (9) 0.0289 (10) 0.0291 (10) 0.0182 (9) 0.0271 (10) 0.0296 (10) 0.0215 (8) 0.0384 (8) 0.0271 (3)
0.0191 (8) 0.0238 (9) 0.0338 (10) 0.0300 (10) 0.0197 (9) 0.0168 (8) 0.0161 (8) 0.0203 (9) 0.0224 (9) 0.0210 (8) 0.0377 (11) 0.0370 (11) 0.0253 (9) 0.0305 (10) 0.0244 (9) 0.0154 (7) 0.0198 (7) 0.0468 (3)
0.0041 (7) 0.0020 (7) −0.0023 (8) −0.0025 (8) −0.0009 (8) 0.0013 (7) −0.0002 (8) −0.0012 (8) 0.0014 (7) 0.0002 (7) 0.0059 (8) 0.0013 (8) 0.0036 (7) 0.0054 (8) −0.0061 (8) 0.0008 (6) −0.0086 (8) 0.0075 (2)
0.0061 (7) 0.0112 (7) 0.0103 (8) 0.0060 (8) 0.0068 (8) 0.0048 (7) 0.0083 (7) 0.0133 (8) 0.0106 (7) 0.0142 (7) 0.0092 (8) 0.0017 (8) 0.0098 (8) 0.0085 (8) 0.0049 (7) 0.0118 (6) 0.0219 (7) 0.0122 (3)
0.0013 (7) 0.0023 (7) 0.0022 (8) −0.0080 (8) −0.0045 (7) −0.0003 (7) 0.0010 (7) 0.0025 (7) 0.0013 (7) 0.0013 (7) −0.0023 (8) −0.0054 (8) −0.0026 (7) 0.0040 (8) −0.0003 (7) 0.0012 (6) −0.0018 (6) −0.0135 (2)
Geometric parameters (Å, º) C1—N1 C1—C2 C1—C6 C2—C3 C2—H2 C3—C4 C3—H3 C4—C5 C4—H4 C5—C6 C5—H5 C6—C7 C7—O1 C7—C8 C8—C9 C8—H8A
1.378 (2) 1.408 (2) 1.417 (2) 1.377 (3) 0.93 1.405 (3) 0.93 1.373 (3) 0.93 1.409 (2) 0.93 1.469 (3) 1.232 (2) 1.506 (3) 1.525 (2) 0.97
C8—H8B C9—N1 C9—C10 C9—H9 C10—C11 C10—C15 C11—C12 C11—H11 C12—C13 C12—H12 C13—C14 C13—Cl1 C14—C15 C14—H14 C15—H15 N1—H1N
0.97 1.460 (2) 1.523 (2) 0.98 1.382 (3) 1.398 (3) 1.390 (3) 0.93 1.378 (3) 0.93 1.386 (3) 1.7425 (18) 1.391 (3) 0.93 0.93 0.84 (2)
N1—C1—C2 N1—C1—C6 C2—C1—C6
120.10 (15) 121.33 (15) 118.56 (16)
N1—C9—C10 N1—C9—C8 C10—C9—C8
109.29 (14) 109.52 (15) 111.48 (15)
Acta Cryst. (2014). E70, o202–o203
sup-5
supplementary materials C3—C2—C1 C3—C2—H2 C1—C2—H2 C2—C3—C4 C2—C3—H3 C4—C3—H3 C5—C4—C3 C5—C4—H4 C3—C4—H4 C4—C5—C6 C4—C5—H5 C6—C5—H5 C5—C6—C1 C5—C6—C7 C1—C6—C7 O1—C7—C6 O1—C7—C8 C6—C7—C8 C7—C8—C9 C7—C8—H8A C9—C8—H8A C7—C8—H8B C9—C8—H8B H8A—C8—H8B
120.62 (16) 119.7 119.7 121.02 (17) 119.5 119.5 119.06 (17) 120.5 120.5 121.32 (17) 119.3 119.3 119.40 (16) 120.84 (16) 119.71 (16) 123.07 (17) 120.19 (17) 116.57 (15) 114.05 (15) 108.7 108.7 108.7 108.7 107.6
N1—C9—H9 C10—C9—H9 C8—C9—H9 C11—C10—C15 C11—C10—C9 C15—C10—C9 C10—C11—C12 C10—C11—H11 C12—C11—H11 C13—C12—C11 C13—C12—H12 C11—C12—H12 C12—C13—C14 C12—C13—Cl1 C14—C13—Cl1 C13—C14—C15 C13—C14—H14 C15—C14—H14 C14—C15—C10 C14—C15—H15 C10—C15—H15 C1—N1—C9 C1—N1—H1N C9—N1—H1N
108.8 108.8 108.8 118.75 (17) 120.02 (17) 121.23 (17) 121.28 (18) 119.4 119.4 118.85 (18) 120.6 120.6 121.64 (17) 119.59 (15) 118.77 (15) 118.64 (17) 120.7 120.7 120.85 (17) 119.6 119.6 119.19 (14) 115.2 (15) 114.2 (14)
N1—C1—C2—C3 C6—C1—C2—C3 C1—C2—C3—C4 C2—C3—C4—C5 C3—C4—C5—C6 C4—C5—C6—C1 C4—C5—C6—C7 N1—C1—C6—C5 C2—C1—C6—C5 N1—C1—C6—C7 C2—C1—C6—C7 C5—C6—C7—O1 C1—C6—C7—O1 C5—C6—C7—C8 C1—C6—C7—C8 O1—C7—C8—C9 C6—C7—C8—C9 C7—C8—C9—N1 C7—C8—C9—C10
−179.37 (16) −0.5 (3) −0.7 (3) 0.9 (3) 0.2 (3) −1.4 (3) 176.00 (18) −179.59 (16) 1.5 (3) 3.0 (3) −175.94 (16) −0.3 (3) 177.09 (18) −175.52 (17) 1.9 (3) 156.11 (19) −28.6 (2) 49.0 (2) 170.10 (16)
N1—C9—C10—C11 C8—C9—C10—C11 N1—C9—C10—C15 C8—C9—C10—C15 C15—C10—C11—C12 C9—C10—C11—C12 C10—C11—C12—C13 C11—C12—C13—C14 C11—C12—C13—Cl1 C12—C13—C14—C15 Cl1—C13—C14—C15 C13—C14—C15—C10 C11—C10—C15—C14 C9—C10—C15—C14 C2—C1—N1—C9 C6—C1—N1—C9 C10—C9—N1—C1 C8—C9—N1—C1
−126.55 (18) 112.2 (2) 52.8 (2) −68.4 (2) 0.1 (3) 179.52 (18) −0.4 (3) 0.0 (3) −179.13 (15) 0.6 (3) 179.75 (14) −0.8 (3) 0.5 (3) −178.88 (16) −159.94 (16) 21.2 (2) −168.81 (15) −46.4 (2)
Hydrogen-bond geometry (Å, º) Cg2 and Cg3 are the centroids of the C1–C6 and C10–C15 benzene rings, respectively.
D—H···A i
N1—H1N···O1
Acta Cryst. (2014). E70, o202–o203
D—H
H···A
D···A
D—H···A
0.84 (2)
2.15 (2)
2.957 (2)
162 (2)
sup-6
supplementary materials C5—H5···Cg3ii C11—H11···Cg2iii
0.93 0.93
2.83 2.63
3.641 (2) 3.465 (2)
146 149
Symmetry codes: (i) x, −y+2, z−1/2; (ii) −x+1/2, y+5/2, −z+1/2; (iii) x+1/2, y+5/2, z+1.
Acta Cryst. (2014). E70, o202–o203
sup-7